
Performance Impact of I/O
on QMCPack Simulations

at the Petascale and Beyond

S. Herbein, M. Matheny, M. Wezowicz
University of Delaware

Newark, DE 19716

J. Krogel, J. Logan, J. Kim, S. Klasky
Oak Ridge National Laboratory

Oak Ridge, TN 37831

M. Taufer
University of Delaware

Newark, DE 19716

Abstract—Traditional petascale applications, such as QMC-
Pack, can scale their computations to completely utilize modern
supercomputers like Titan, but they cannot scale their I/O. To
preserve scalability, scientists cannot save data at the granularity
needed to enable scientific discovery and are forced to use large
intervals between two checkpoint calls. In this paper, we work
to increase the granularity of the I/O in QMCPack simulations
without increasing the I/O associated overhead or compromising
the scalability of the simulations. Our solution redesigns the I/O
algorithms used by QMCPack to gather finer-grained data at
high frequencies and integrate the ADIOS API to select effective
I/O methods without major code changes. The extension of a tool
such as Skel to mimic the variable I/O in QMCPack allows us
to predict the I/O performance of the code when using ADIOS
methods at the petascale. We show how I/O libraries like ADIOS
allow us to increase the amount of scientific data extracted from
QMCPack simulations at the granularity desired by the scientists
while keeping the I/O overhead below 10%. We also show how the
impact of checkpoint I/O for the QMCPack code using ADIOS
is below 5% when using preventive tactics for checkpointing at
the petascale and beyond.

I. INTRODUCTION

As supercomputers and their applications begin to move
closer to exascale, scientists will have to sacrifice writing
fine-grained scientific data to disk to maintain simulation
scalability. The Quantum Monte Carlo code, QMCPack, is
already facing this challenge at the petascale. QMCPack’s
existing I/O methods cannot write fine-grained data at scale
without compromising scalability. As a result, averaged statisti-
cal values across the entire simulated molecular system, rather
than the exact values for each particle, are written to disk.
For the same scalability reason, the checkpoint data needed
to restart a crashed simulation is written to disk only after
large time intervals. Preliminary tests showed that even for
QMCPack simulations of simple molecular systems, the time
spent in I/O associated with checkpointing might contribute to
a large portion of the total wall-clock time. Figure 1 shows
an example of the time spent on execution (computation and
communication) versus the time spent on I/O checkpointing
for a QMCPack simulation of simple water molecules for a
fine-grained checkpoint frequency. When using 64 nodes on a
small cluster at Oak Ridge National Laboratory, close to 90%
of the execution time is spent writing to disk. Overall, similar
simulations of larger systems on a larger number of nodes can
become prohibitively long.

16 32 64
0%

10%

20%
30%

40%
50%

60%

70%
80%

90%
100%

Ti
m

e 
(%

)

Number of nodes

COMP.HDF5 I/O

Fig. 1: Time distribution in terms of execution (i.e., compute
and communication) and I/O for a water simulation with

QMCPack and HDF5.

The goal of the work in this paper is to present solutions
that allow users to increase both the granularity of scientific
and checkpoint data written to disk in QMCPack simulations
without increasing I/O overhead or compromising the simula-
tion’s scalability. The contributions of this paper are twofold:

• We extend QMCPack code to efficiently support fine-
grained writing of scientific data to disk. To do so, we
first redesign the I/O algorithms of QMCPack to write
simulation data at a fine-grained per-process level (i.e.,
positions and energies of each single particle) rather
than at a coarse-grained per-simulation level (i.e.,
average energies of the whole molecule). Then we
reengineer the original and extended QMCPack codes
to use the ADIOS (Adaptable I/O System) I/O library
rather than HDF5 to write in output positions and
energies at both fine-grained and coarse-grained levels.
We analyze the performance of QMCPack writing in
output fine-grained and coarse-grained data by using
HDF5 and ADIOS.



• We assess the impact of I/O on checkpointing for
the QMCPack code using ADIOS on extreme-scale
platforms. To do so, we first redesign the checkpoint
algorithms of QMCPack to use ADIOS rather than
HDF5 for writing to disk the particle positions needed
to restart crashed simulations. We also extend the Skel
tool to emulate the variable I/O in QMCPack during
checkpointing and use the tool to collect a large set
of I/O times without running entire simulations. We
then apply regression and extrapolation methods to the
time dataset generated by a combination of QMCPack
and Skel runs to estimate the checkpoint times at a
large scale. We use the estimated times to predict
the impacts of I/O on QMCPack simulation times on
extreme-scale systems when preventive and proactive
tactics for checkpointing are used.

The rest of this paper is organized as follows: Section II
provides a brief overview of the software used in this work
and the related work; Section III describes the new versions
of the QMCPack code that use ADIOS to write fine-grained
statistics and checkpoint data as well as the extended Skel
tool to estimate the I/O performance of QMCPack; Section IV
presents the performance analysis and predictions; and Sec-
tion V concludes this paper.

II. BACKGROUND

The work presented in this paper deals with the QMCPack
code, its extension to collect fine-grained statistics, and the
integration of the ADIOS library into the code. It also deals
with the Skel tool to collect I/O times of QMCPack using
ADIOS without the need for running entire simulations. In this
section we give a brief overview of these three key software
components, (i.e., QMCPack, ADIOS, and Skel).

A. The QMCPack Code

The QMCPack project uses quantum Monte Carlo methods
to find solutions to the many-body Schrodinger’s equation by
stochastic samplings [1]. Quantum Monte Carlo is one of the
most accurate methods and has been applied to a wide range
of problems from molecules to condensed matter systems. In
theory, QMCPack seems to be the perfect exascale application,
but as our work shows, the performance can be hindered by
its I/O when executed on a large number of nodes.

QMCPacks algorithm works through several phases. First,
it randomly generates many trial solutions called walkers.
Walkers are then evolved over many steps using a method
called Variational Monte Carlo (VMC), which gives rough
solutions to the system of particles then refined using many
iterations of Diffusion Monte Carlo (DMC). VMC and DMC
are subdivided into blocks, and each block is divided into steps.
Each step corresponds to one modification of the walker’s data
and one communication event between processes to compute
global variables, such as the trial energy and the current
number of walkers. Walkers with low energy levels may
be duplicated, and walkers with high energy levels may be
culled during the modification period of a step. The number
of walkers is rebalanced among processes by communicating
walker data between processes at the end of each step. Since
the algorithm is loosely coupled and highly parallel, QMCPack

with its CUDA and OpenMP versions can theoretically take
advantage of parallelism at many levels on hybrid petascale
computers, such as Titan. At the same time, the I/O cost can
sum up as the number of walkers increases to the point that
the time for the walkers’ I/O constitutes a large part of the
wall-clock time.

B. The ADIOS Framework

ADIOS is an I/O framework currently being developed
at ORNL. It consists of a suite of I/O methods, an easy to
use read-and-write API, a set of utilities, and metadata stored
in an external XML file [2]. The XML file is parsed on
ADIOS initialization; its metadata contains a description of
the data generated and information on how the data should
be written out to disk. Different I/O methods can be specified
in the XML file and selected at runtime, including POSIX,
MPI, and MPI AGGREGATE. ADIOS POSIX is the simplest
of the ADIOS methods; it uses the standard POSIX file
API. Each process writes to one file, and an extra metadata
file is created to reference the data output. POSIX obtains
high performance when using few processes since it has low
overhead, but for large process counts the metadata server
of distributed file systems such as Lustre can become a
bottleneck. ADIOS MPI AGGREGATE is a hybrid method
that first aggregates data to a small subset of processes and
then uses MPI-I/O to write to disk. By accumulating data,
ADIOS MPI AGGREGATE keeps the load on the Lustre
metadata server low and, therefore, continues to perform even
with very large numbers of processes. By simply changing
a line in the XML file, the behavior of an application can
be significantly altered and optimized for the architecture of
the file system. The simple API allows for minimal changes
to the existing code base while the metadata enables I/O
method switching without recompiling the code. These ADIOS
features simplify our performance profiling and predictions of
QMCPack simulations with a diverse set of I/O methods.

C. The Skel Tool

Skel is a tool for building the skeleton of an application’s
I/O by decoupling the I/O component of a complex code
from its computation and communication components and
by generating the I/O skeleton for benchmarking [3]. Skel
takes an ADIOS XML metadata descriptor and a set of
parameters and generates C or Fortran source code with the
appropriate ADIOS API calls, data generation, and timers. In
a second phase, Skel generates all the supporting files needed
to benchmark multiple ADIOS I/O methods in one pass. The
execution of the benchmarks on real platforms is faster because
Skel does not include computation and communication but
rather I/O; users can easily and effectively collect a large set of
I/O performance information. The original implementation of
Skel had a major limitation that reduces its applicability: it only
provides a method to specify fixed I/O size per “time step.”
We address this limitation below and use the extended Skel
for our predictions. Note that Skel was validated in previous
work [4] and, thus, the validation is not part of the contribution
of this paper.

III. EXTENDING QMCPACK AND SKEL CODES

We took a version of the QMCPack code that outputs only
a few statistics and redefined the code’s I/O algorithms to



output more extensive scientific traces and perform efficient
checkpointing. Here, we describe our algorithms and discuss
how we integrated them into QMCPack with the HDF5 and
ADIOS libraries. We also describe how we integrated the I/O
model of QMCPack into Skel for measuring I/O times of
QMCPack using ADIOS on extreme-scale computers.

A. Collecting Rich Scientific Traces

In the original version of QMCPack, called QMCPack
STATS, each process generates a reduced number of statistics
about the walkers’ energetics and writes them to disk every
n steps, where the number of steps is defined by the user.
More specifically, the processes perform an MPI reduce to
calculate a system-wide average of eleven energetics across
all QMCPack walkers. These average values are written to
disk in a single location supported by the HDF5 data and
programming model [5]. This procedure creates very little data,
incurs almost no I/O overhead, and allows for high scalability.
At the same time, the minimal data is often not sufficient to
answer scientists’ questions with the desired level of detail.

We designed and implemented a more interesting version
of QMCPack, called QMCPack TRACES, that increases the
granularity of the calculated energetics statistics from an
average value taken across the entire simulation to exact values
at a per-walker and per-particle level. The increased number of
statistics collected includes the positions of the particles, which
are necessary to study the density of the particles within the
walkers. These modifications required major changes to the
QMCPack I/O algorithms to support the additional statistics
collected and the finer granularity. To do so, we extended the
code with an application level buffer for the collected statistics.
Each process saves the contents of its buffer to disk every n
steps, where n is provided by the user and can range from one
to hundreds of steps. The buffer helped performance in several
ways. First, it allowed for larger but less frequent writes, thus,
incurring fewer penalties associated with frequent access to
the Lustre meta-data server. Second, it aggregated the variable
sized writes across multiple time steps, resulting in a more
balanced load across processes and fewer stragglers. Our first
implementation of QMCPack TRACES used the HDF5 data
and programming model.

To integrate ADIOS into the STATS and TRACES versions
of QMCPack, we substituted HDF function calls with ADIOS
function calls and created the ADIOS XML metafiles, which
define how data is stored and written to disk by ADIOS. The
analysis of QMCPack codes using ADIOS will be presented
in Section IV.

B. Performing Effective Checkpointing

In both QMCPack STATS and QMCPack TRACES codes
using HDF5, the checkpoint write was done by having each
process communicate its particle positions to a master process
using a MPI Gather() call. The data was then written out to a
single disk using HDF5. Gathering the data in this way had two
primary limitations. First, the node hosting the master process
required enough memory to hold all the walkers from all the
nodes. Second, as the number of processes increased, the data
transfer times increased, eventually impacting the scalability
of the simulations on extreme scale machines. To address both

issues, we modified the QMCPack code to perform a virtual
write-out per process through the ADIOS API. Once the data
was handled by ADIOS, we used one of the several ADIOS
write methods to efficiently write data to storage, including
MPI AGGREGATE.

QMCPack’s original checkpoint-restart implementation
also used a master-worker model, where the master read in all
the data and then redistributed to each worker. While restart
performance is much less critical than write performance,
restarting is not feasible if the walkers’ data exceeds the
memory on the node hosting the master process. Moreover, in
the original checkpoint-restart, QMCPack was able to restart
from many different starting files, where each file could
have been written by a different QMCPack simulation with
a different number of processes. This flexibility complicated
the ADIOS restart implementation since ADIOS stores data
on a per-process basis called a block and QMCPack writes
a variable amount of data per process. We took into account
these challenges and redefined the I/O algorithms in QMCPack
so that, when restarting, all processes can now query the
ADIOS metadata file for the size of each of the blocks,
calculate which blocks they needed to read in, and identify
relevant portions of those blocks. Moreover, each process
keeps track of how many walkers the other processes had
read in, allowing QMCPack to restart without using any
MPI communication while maintaining a balanced distribution
of walkers. We integrated the new checkpoint algorithms in
QMCPack and used the ADIOS API to select effective I/O
methods in Section IV.

C. Emulating QMCPack’s I/O

To predict the impact of I/O on performance for the
QMCPack code at a large scale in a short turnaround time,
we used Skel. The original Skel tool supported a fixed-size
I/O model that is not realistic for many scientific applications,
QMCPack included. As described in Section II, QMCPack
processes have a variable number of walkers. As a QMCPack
simulation evolves, walkers are generated or terminated based
on their energy values, making the I/O of each process variable
in size. We modeled the variable number of walkers through
the behavior of a spring as the number of walkers fluctuated
around a target value. We approximated the dampened spring
equation using the Midpoint method and then made small ran-
dom changes to the spring’s position. We empirically validated
the typical fluctuations of the number of walkers per process
against the values generated by the model by tracking their
creation and termination and found the patterns to be similar,
as shown in Figure 2. The inherent randomness of Monte Carlo
simulations precludes an exact match; the approximation is
adequate for the work in this paper.

We extended Skel to integrate our spring-based model
of the variable QMCPack I/O through inline C and Fortran
functions or the inclusion of code from files. This was accom-
plished by adding additional tags to Skel’s XML description of
the I/O. When these tags are encountered, Skel uses the user-
specified function to generate the variable I/O across processes.

IV. PERFORMANCE ANALYSIS AND PREDICTION

The I/O performance of the QMCPack codes with the
original HDF5 library and ADIOS are measured and analyzed



I/O steps 

N
um

be
r o

f w
al

ke
rs

 

(a) Empirical QMCPack walkers’ numbers

N
um

be
r o

f w
al

ke
rs

 

I/O steps 

(b) Spring-based simulated numbers

Fig. 2: Comparison of empirical QMCPack walkers’ numbers
versus spring-based simulated numbers.

below. The predictions of the I/O impact on QMCPack sim-
ulations when executed on extreme-scale computers end this
section. We conducted our tests on Titan, a Cray XK7 machine
with 18,688 compute nodes connected to Spider, a Lustre file-
system with 10.7PB of space and a bandwidth of 240GB/s. We
considered three molecular systems different in size: graphite
3x3x1 with 36 carbons and 144 electrons (showed in Figure 3),
graphite 4x4x1 with 64 carbons and 256 electrons, and graphite
4x4x2 with 128 carbons and 512 electrons.

A. Performance Analysis

To analyze the I/O performance of the STATS and
TRACES codes, we compared the weak-scaling I/O perfor-
mance of the original version of the QMCPack code using
HDF5 with our modified versions of the same code utiliz-
ing the ADIOS methods POSIX and MPI AGGREGATE.
For our tests we used 2, 4, and 8 aggregators for ADIOS
MPI AGGREGATE. Each run had two MPI processes per
node with eight OpenMP threads per MPI process. We ran
tests with 512, 1024, 2048, and 4096 nodes, or in other words
1024, 2048, 4096, and 8192 processes.

The STATS versions of QMCPack with ADIOS and HDF5
exhibit similar performance behaviors as QMCPack with no
I/O because of the small amount of data written per iteration.
We observed I/O overheads consistently below 1% for both
ADIOS and HDF5 versions of the code. Because this com-
parison does not add any new I/O insight, it is not further

Fig. 3: Graphite 3x3x1 with 36 carbons and 144 electrons.

discussed in this paper.

On the other hand, the version of QMCPack TRACES
writes larger amounts of data than QMCPack STATS, more
frequently. Graphite 4x4x2 writes between 12GB and 50GB
every 60s; graphite 4x4x1 writes between 3GB and 24GB ev-
ery 12s; and graphite 3x3x1 writes between 1.5GB and 13GB
every 4s depending on the number of nodes used on Titan.
These frequencies and data sizes reveal an important scaling
trend. The data sizes scale linearly with the number of particles
in the systems, but the write frequencies scale polynomially.
This is due to the O(n2) runtime of the QMCPack’s algorithm,
where n is the number of particles. We observed that the larger
the simulated system, the lower the I/O overhead. We also
observed that for small molecular systems, such as graphite
4x4x1 and 3x3x1, smaller, more frequent writes result in
inefficient scaling for both ADIOS and HDF5. Graphite 4x4x2,
simulations with ADIOS MPI AGGREGATE and HDF5 ex-
hibit similar performance when executed on a small number
of processes and reach our goal of less than 10% I/O overhead
despite the larger I/O. For a larger number of processes, we
observed that ADIOS exhibits better performance than HDF5
when the user defines an optimal number of cores to aggregate
and schedule the data to be written. No substantial motivation
was found for the increased variability of HDF5 with 4096
processes, and the further investigation of the problem is work
in progress.

These trends for the larger graphite 4x4x2 are outlined
in Figures 4(a) and 4(b). Figure 4(a) shows the average
percentage of time spent in execution (i.e., for computation
and communication) versus the time spent for I/O. The values
are obtained over a set of 6 QMCPack runs, each performing
100 DMC steps and printing in output the traces every 10
steps. Figure 4(b) shows the variability of the times due to
I/O across the sampled set in a box plot. The top, middle and
bottom line of each box corresponds to the 75th percentile
(top), 50th percentile (middle) and 25th percentile (bottom).



AD
IO

S 
AG

G
R

 2
to

1

AD
IO

S 
AG

G
R

 4
to

1

AD
IO

S 
AG

G
R

 8
to

1

H
D

F5

AD
IO

S 
AG

G
R

 2
to

1

AD
IO

S 
AG

G
R

 4
to

1

AD
IO

S 
AG

G
R

 8
to

1

H
D

F5

AD
IO

S 
AG

G
R

 2
to

1

AD
IO

S 
AG

G
R

 4
to

1

AD
IO

S 
AG

G
R

 8
to

1

H
D

F5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m

e 
(%

)
I/O

EXEC.

np=1024 np=2048 np=4096

(a)

B
B

B

B

B B
B

B
B B

B

B

AD
IO

S 
AG

G
R

 2
to

1

AD
IO

S 
AG

G
R

 4
to

1

AD
IO

S 
AG

G
R

 8
to

1

H
D

F5

AD
IO

S 
AG

G
R

 2
to

1

AD
IO

S 
AG

G
R

 4
to

1

AD
IO

S 
AG

G
R

 8
to

1

H
D

F5

AD
IO

S 
AG

G
R

 2
to

1

AD
IO

S 
AG

G
R

 4
to

1

AD
IO

S 
AG

G
R

 8
to

1

H
D

F5

500

550

600

650

700

750

800

850

900

950

1000

Ti
m

e 
(s

ec
)

np=1024 np=2048 np=4096

(b)

Fig. 4: Percentage of time spent on the execution of QMCPack TRACES versus I/O (a) and time variability due to I/O across
samples (b).



TABLE I: Size of data written to disk per checkpoint step for
each of the three graphite systems.

Graphite 3x3x1 4x4x1 4x4x2
2048 nodes 921.6MB 1636.8MB 3257.6MB
4096 nodes 1835.2MB 3238.4MB 6532.8MB

The small square indicates the arithmetic mean of the sampled
times. Note that because ADIOS POSIX performs very well
with a smaller number of nodes but fails to scale past 512
nodes, the figure presents only results of HDF5 runs and the
ADIOS MPI AGGREGATE method using different numbers
of aggregates.

The checkpoint version of QMCPack with ADIOS clearly
outperforms the HDF5 version because of the different ap-
proach our version of the code applies to write the checkpoint
data to disk, as described in Section III-B. Preliminary results
on smaller systems, such as water, pointed out the performance
deficiencies of the HDF5 code as shown in Figure 1, making
checkpointing for graphite systems unfeasible on extreme-
scale computers. Thus, we did not further use the HDF5
version in the analysis of the checkpoint performance. Our
tests were performed with the CUDA version of QMCPack
on 2,048 and 4,096 nodes of Titan. Each run used one
single process per node and is executed on the nodes GPU.
Table I shows the amount of data written by QMCPack
per checkpoint with the three different molecular systems
(i.e., graphite 3x3x1, 4x4x1, 4x4x2). When checkpointing the
particle positions of a small graphite 3x3x1 with our QMC-
Pack code using ADIOS, POSIX performs better on a small
number of nodes, but as the number of nodes increases the
MPI AGGREGATE method does increasingly well. For the
medium graphite 4x4x1, while MPI AGGREGATE continues
to do well, we observed high variability for the POSIX runs.
For the large graphite 4x4x2, MPI AGGREGATE continues
to perform better than POSIX. The checkpoint times for the
large graphite 4x4x2 are presented in Figure 5(a). The figure
shows the variability of the times per checkpoint in a box
plot. Overall, all runs exhibit time variability for the various
I/O methods. MPI AGGREGATE and large molecular systems
performance results are the most consistent across runs and,
thus, used in the next section for estimating the checkpoint
impact on QMCPack simulations on extreme-scale computers.
We believe the variability is due to two factors: the loads on
the metadata server and on the Lustre Object Storage Targets
(OSTs) as the runs were done on shared clusters where the
OSTs may have been highly loaded.

B. Performance Predictions

To estimate the performance impact of I/O associated with
checkpointing of QMCPack simulations when preventive and
proactive tactics for checkpointing [6] are used, we need to
refer to credible platform configurations for the predictions.
According to Cappello and co-workers [7], a petascale machine
like Titan has an expected mean time to failure (MTTF)
ranging from 24 hours to 6 hours. Again based on [7], to
minimize the loss in computation due to a simulations crash,
a preventive tactic should write the checkpoint data with a
frequency of 30 minutes, while a proactive tactic is expected

TABLE II: Average checkpoint times for QMCPack with
ADIOS on different platform configurations.

Petascale Extreme-scale
(Titan, 16K nodes) (64K nodes)

Time (sec) 1.7sec 5sec

to checkpoint every 10 to 5 seconds. For extreme-scale con-
figurations, Cappello and co-workers expect a MTTF of 2 to
1 hours in an optimistic scenario with a write frequency of
every 2.5 minutes for a preventive tactic and of 5 to 1 sec for a
tactic checkpointing. In a pessimistic scenario, a MTTF can be
experienced every 30 minutes and, thus, a preventive tactic will
write every 10 minutes to disk; a proactive tactic for check-
pointing should write every 5 to 1 sec. As proven in Figure 1
where similar frequencies were used, these frequencies are
unthinkable on Titan for QMCPack simulations using HDF5,
much less for extreme-scale platforms. The question we want
to address here is whether ADIOS can enable such checkpoint
frequencies and at what cost. To answer the question we refer
to the numbers in [7] for our estimations.

Our goal is to estimate the checkpoint time in QMC-
Pack with ADIOS at a large scale (i.e., on all the nodes
of Titan as well as on an extreme-scale configuration). To
this end, we applied linear extrapolation techniques onto a
dataset of observed checkpoint times to estimate times beyond
the original dataset samples. We generated the dataset from
QMCPack simulations using ADIOS MPI AGGREGATE as
presented in Figure 5(a) and from Skel runs presented in
Figure 5(b). The QMCPack times were generated over a range
of 512 - 2,048 nodes and consisted of 220 write samples. Note
that we considered the ADIOS MPI AGGREGATE method
for our sampling because it is stable and generally performs
better. On the other hand, Skel times were generated over a
range of 4,096 - 16,384 nodes and consisted of 660 write
samples. The linear interpolation of the sampled times gave the
function: timechkpnt = 0.71054612 + n ∗ 0.06765666, where
n is the number of processes considered. Table II summarizes
the average checkpoint times for QMCPack with ADIOS on
16,384 processes on Titan as well as on a platform that is one
order of magnitude larger than Titan in terms of number of
nodes.

With the values in Table I, we computed the percentage
of time spent on execution (i.e., computation and communi-
cation) versus I/O for checkpointing over a period of 24h on
Titan for QMCPack on 16,384 nodes. The frequency of the
checkpointing is given by the length of the day in seconds
(86400 seconds) over the frequencies for the preventive tactic
(i.e., every 30 minutes) and for the proactive tactic (i.e., every
10 seconds). The time spent for checkpointing over the 24
hours is given by the checkpoint frequency multiplied by the
checkpoint times found in Table I. Similarly, we can compute
the same times for the optimistic and pessimistic extreme-scale
configurations where we assume the size of the platform almost
one order of magnitude larger than the petascale configuration
of Titan. More specifically, we assume the extreme scale
platform comprising of 65,536 nodes. Figure 6 shows the
expected average times in percentage for execution and I/O
for the three configurations. We observed how a preventive



B

B

B B

2K 4K 2K 4K
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ti
m

e 
(s

ec
)

POSIX AGGREGATE

(a)

B

B
B

4K 8K 16K
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ti
m

e 
(s

ec
)

(b)

Fig. 5: Checkpoint times for the larger graphite 4x4x2 with QMCPack using ADIOS (a) and Skel (b).

tactic is expected to have a negligible impact (less than 5%)
on the I/O cost of QMCPack checkpointing for both an existing
petascale platform with 16K nodes, such as Titan, and for a
theoretical extreme-scale platform with 64K nodes. This is not
the case for a proactive tactic for which a QMCPack simulation
would spend almost 18% of the time checkpointing on Titan
and 100% of the time on the extreme-scale platform.

preventive proactive preventive proactive
0%

10%

20%

30%
40%

50%
60%

70%

80%
90%

100%

TI
m

e 
(s

ec
)

I/OEXEC.

Petascale Extreme-scale

Fig. 6: Predicted percentage of time spent for execution and
I/O on a petascale platform with 16K nodes, such as Titan,

and on a theoretical extreme-scale platform with 64K nodes.

C. Discussion

In the comparisons of QMCPack performance with ADIOS
and HDF5, there is no doubt that the ADIOS version of the
checkpointing QMCPack code enables effective checkpointing
while the HDF5 version showed costs that were too high.

While in some of the TRACES tests presented above
ADIOS and HDF5 exhibit similar performance, as shown in
Section IV-A, there are three main reasons for relying on the
first rather than the second I/O model. First, ADIOS allows for
easily adjustable I/O-methods and parameters. In other words,
users can tweak I/O parameters and methods without having
to recompile their codes. This feature is particularly useful
when optimizing codes on a new system, (e.g., when moving
simulations from Titan to Blue Gene/Q). ADIOS only requires
changing some parameters in the ADIOS XML file to optimize
the I/Os code for a specific system, (e.g., variable number
of aggregators for the MPI AGGREGATE method) and no
recompilation is required. Optimal performance with HDF5,
on the other hand, may require tweaking of the source code.

Second, ADIOS improves file organization and access for
analysis and visualization. By creating a single metadata file,
ADIOS abstracts away management of the numerous files
created by the QMCPack simulations. The users open the
single metadata file and execute the read data just as they
would if the data were in a single file, leaving the responsibility
to handle the heavy work to ADIOS. In contrast, with HDF5,
users have to handle the opening of every single HDF5
file and then coordinate the reads potentially across multiple
nodes, making the data access harder due to the manual MPI
code. Moreover, ADIOS automatically generates and saves
additional information about the data in the metadata file,
including minimum, maximum, and average values of I/O
variables. This information is available to the users for free
during the analysis. The version of QMCPack using ADIOS is
now one change away from using staging in which QMCPack
traces can be sent to a set of nodes in the system where



different applications can analyze and visualize the science
generated with the simulations. This can be accomplished by
changing the parameters in the ADIOS XML file without any
code changes. In contrast to ADIOS, HDF5 would require
the QMCPack developers to duplicate the HDF5 code and
customize it for any staging method they choose to use.

Third, QMCPack using ADIOS can potentially benefit from
the new ADIOS I/O methods that are being released. For
example, the work of Tian and co-workers [8] introduces a time
coalescing method in ADIOS that allows for a finer grained
write in output with no write performance losses. The method
allows users to write data of multiple time steps in output
all at a single time, preventing the generation of big buffers
for the accumulation of multiple time steps. The method also
allows ADIOS better indexing of the data, thus improving
read performance, and adds a transformation layer to chunk
the variables across the time dimension. This can greatly
improve read performance of QMCPack values across its time
steps. This and other in-progress ADIOS transformations allow
for performance enhancements in QMCPack simulations: all
QMCPack developers have to do is add a new parameter to
their ADIOS XML file before starting their simulations.

V. CONCLUSION

In this paper we described our work to achieve two main
goals: extending the QMCPack code to efficiently support fine-
grained writing of scientific data to disk and estimating the
impact of I/O on checkpointing for the QMCPack code using
ADIOS on petascale platforms and beyond.

We achieved the first goal by redesigning the I/O al-
gorithms of QMCPack to write positions and energies of
each single particle rather than average energies of the whole
molecule. We assessed the success of our work by analyzing
the performance of QMCPack when using either HDF5 or
ADIOS. Both HDF5 and ADIOS kept the I/O overhead below
10% on Titan with simulations with up to 4096 processes.
As the number of processes increased, we observed an initial
slowdown due to I/O that is larger with HDF5. A further
study of the slowdown is work in progress. Although in our
tests we did not observe any significant performance difference
when using ADIOS or HDF5, we believe that ADIOS may
be preferable beyond petascale because it comes with the
additional features discussed in the paper.

We achieved the second goal by using linear extrapolation
techniques to model the checkpoint times and by predicting

the percentage of time a simulation of 24 hours would spend
checkpointing when using either a preventive or proactive
tactic for checkpointing in both optimistic and pessimistic
scenarios. We showed how ADIOS enables frequent check-
pointing with negligible overheads (below 5%) when using
preventive tactics for checkpoint on petascale and beyond.

ACKNOWLEDGMENTS

S. Herbein, M. Matheny, and M. Wezowicz equally con-
tributed to this work. This work is supported in part by the NSF
grants: CNS 1318417 and CNS 1217812. It was also partially
supported by the projects Predictive Theory and Modeling for
Materials and Chemical Science by the Department of Energy
(DOE), Basic Energy Science (BES), the Laboratory Directed
Research and Development Program of ORNL, and the DOEs
SULI Program. The authors also want to thank Dr. Norbert
Podhorszki for his advice on using ADIOS.

REFERENCES

[1] J. Kim and K.P. Esler and J. McMinis and M. A. Morales and B.K. Clark
and L. Shulenburger and D.M. Ceperley. Hybrid Algorithms in Quantum
Monte Carlo. Journal of Physics: Conference Series, 402(1): 012008,
2012.

[2] J.F. Lofstead and S. Klasky and K. Schwan and N. Podhorszki and
Chen Jin. Flexible I/O and Integration for Scientific Codes through the
Adaptable I/O System (ADIOS). CLADE 2008, 15-24, 2008.

[3] J. Logan and S. Klasky and H. Abbasi and Q. Liu and G. Ostrouchov and
M. Parashar and N. Podhorszki and Y. Tian and M. Wolf. Understanding
I/O Performance Using I/O Skeletal Applications. Euro-Par 2012, 77-88,
2012.

[4] J. Logan and S. Klasky and J.F. Lofstead and H. Abbasi and S. Ethier and
R.W. Grout and S.-H. Ku and Q. Liu and X. Ma and M. Parashar and N.
Podhorszki and K. Schwan and M. Wolf. Skel: Generative Software for
Producing Skeletal I/O Applications. e-Science Workshops 2011, 191-
198, 2011.

[5] The HDF Group. Hierarchical data format version 5, 2000-2010.
http://www.hdfgroup.org/HDF5.

[6] F. Cappello and H. Casanova and Y. Robert. Preventive Migration vs.
Preventive Checkpointing for Extreme Scale Supercomputers. Parallel
Processing Letters, 21(2): 111-132, 2011.

[7] M. Slim Bouguerra and A. Gainaru and L. Bautista Gomez and F.
Cappello and S. Matsuoka and N. Maruyam. Improving the Computing
Efficiency of HPC Systems Using a Combination of Proactive and
Preventive Checkpointing. IPDPS 2013, 501-512, 2013.

[8] Y. Tian and S. Klasky and Y. Weikuan and H. Abbasi and W. Bin Wang
and N. Podhorszki and R. Grout and M. Wolf. SMART-I/O: SysteM-
AwaRe Two-Level Data Organization for Efficient Scientific Analytics.
MASCOTS 2012, 181-188, 2012.


