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ABSTRACT

Debugging the performance of parallel and distributed systems
remains a difficult task despite the widespread use of middleware
packages for automatic distribution, communication and tasking
in clusters. In this paper we present a performance monitoring
tool for clusters of PCs that is based on the simple concept of ac-
counting for resource usage and on the simple idea of mapping all
performance related state of hardware performance counters and
operating system variables backwards to the application level. In
this way a monitoring tool can explain the most relevant perfor-
mance metrics at a higher level that is easily understood by the ap-
plication developer. The most important metric for distributed high
performance applications remains the total execution time vs. the
number of compute nodes involved, since it translates into the scal-
ability of an application. As a detailed contribution of this paper,
we closely look into what is needed to reverse map the low level
performance counters at each node back through the middleware
layer responsible for the parallelization and distribution. The spe-
cific problems encountered and dealt with are the creation of a flex-
ible notion of global time for timestamping and the reassembling of
performance data and an appropriate communication mechanism
to minimize monitoring intrusion due to the additional networking
traffic caused by the monitor. We show how our tool can be used to
measure, explain and predict the performance and scalability of a
distributed OLAP application running on clusters of PCs.

Keywords: Parallel and distributed systems, real-time perfor-
mance analysis and evaluation, performance metrics, monitoring
traffic, notion of time in distributed systems, clusters of PCs.

1. INTRODUCTION

Up to this date a significant effort has been put into software sys-
tems for performance monitoring and performance debugging par-
allel and distributed applications on clusters of PCs. The systems
include extensive monitoring and account for communication traf-
fic for parallelization of loops and a variety of other instruments
that are very helpful to a programmer who knows all the common
methods to code a computation in parallel- or distributed way for
higher speed. Most of the existing tools use some graphical means
to display a wealth of information they collect about the running
application. A brief survey is given at the end of the paper when
describing related work. Despite all the research and implementa-
tion efforts, distributed systems still lack performance monitoring
tools that are as simple to use and as clearly cut in their function-
ality as the common debuggers or profilers for uniprocessors are.

This fact is recognized by the most important experts in the field as
the primary hindrance to the success and widespread use of parallel
and distributed computing [1].
As a general contribution to the state of the art we describe a novel
performance monitoring tool that should be as simple as possible in
its functionality and much easier to use as previous systems paral-
lel or distributed applications. Most performance monitoring tools
are heavily intrusive - either compile-time or at run-time. They re-
quire instrumentation at the source code level, at link level or do
binary rewriting. In contrast our performance monitoring tool at-
tempts to provide its instrumentation independently, side-by-side
to any applicable middleware package. The tool attempts to avoid
intrusion into the code whenever possible and works with the per-
formance counters that are present in most microprocessors used
in the compute nodes or with the performance information kept in
the kernel of the common operation systems used in the compute
nodes. The resulting performance monitoring information is gath-
ered and assembled into a global performance assessment of the
executing application.
As a specific contribution, we address four interesting issues re-
lated to the problem of collecting and reconstructing global perfor-
mance monitoring data on distributed systems. First, we present
an innovative way to deal with the additional network traffic due to
the collection and the processing of performance monitoring sam-
ples. This keeps the intrusiveness related to addition communica-
tion traffic as low as possible. Second, we address and solve the
problem of rebuilding a global notion of time within a parallel or
distributed system using some accurately synchronized cycle coun-
ters to get a global time scale without requiring any additional syn-
chronization messages. Third, we show how to reassemble the in-
formation of the hardware performance counters and the operating
system performance variables into a global performance picture.
Based on our previous experiences [2, 3, 4], we claim that in most
applications there is a simple relationship between the machine re-
sources required by the application and its execution time. The total
execution time decomposes into parts that are largely determined
by the usage of one single critical machine resource. Examples are
part limited by the CPUs, the memory systems, the distributed disks
or the communication system in a cluster of commodity PCs or a
desktop grid. As we use a lossy communication mechanism to min-
imize intrusion while collecting monitoring samples, we compen-
sate the lost samples in simple way by interpolation and by trans-
mitting the totals of resource usage in each samples rather than just
the increment. The final grand totals are transmit with a reliable
request response protocol after the application completes and are
guaranteed to arrive.
The resolution of our simple performance monitoring tool might
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not be as high as some other more sophisticated tools, but the tool
stays conceptually clean and helps to provide an easy way to ana-
lyze and predict the performance for general applications for which
the user relies on an middleware for the parallelization and the dis-
tribution. We have used our performance monitoring tool on dis-
tributed databases running parallel OLAP workloads on a cluster
of database PCs as well as on distributed protein folding calcula-
tions running on clusters of commodity PCs. While most functions
of our software system are generic to any application some parts
remain application and middleware independent. Towards the end
of this paper we prove the viability of our performance monitoring
tool as we use our tool in an experimental study to find the reason
behind the insufficient scalability of a particular TPC-D query exe-
cuting on a cluster of three or six PCs connected with different high
speed networking technologies.
The rest of the paper presents the overall architecture and design
principles of our tool, describes the implementation focusing on
the solutions we devised for collecting and reassembling distributed
performance data into a global picture and finally shows how our
performance monitor can be used to measure, explain and predict
the performance and scalability of a distributed OLAP application
running on a cluster of PCs.

2. ARCHITECTURE OF OUR
PERFORMANCE MONITOR

2.1 Resource Usage as Principal Metric of Per-
formance

While the end user primarily looks at the total execution time of the
application, the system architect is mostly concerned with the per-
formance data related to the usage of the system resources like e.g.
the number of floating point operations performed, the number of
operands loaded from memory, the number of bytes communicated
between the nodes.
Our performance monitoring system tries to link the two perspec-
tives to each other by breaking the total execution time into partial
execution times attributed to each type of resource, i.e. CPU, mem-
ory, disk and network. This simple model works well if the partial
execution times of an application run can be cleanly attributed to
one single critical resource at all times during the execution. Our
experiences with different kind of applications from scientific com-
putation to distributed database have shown that this is a viable first
order approximation, than can explain main performance problem
in practice [2, 3, 4].
This neat decomposition of execution time according to machine
resource class allows the user and the systems architect to study the
impact of each single resource to the system in an systematic way.
To study interactions we can also apply the concept of factors and
their confounding [5] to the study of resource usage.

2.2 Layered Software Systems
Most software systems running on clusters can be structured in
three layers: the application code, the middleware packages sup-
porting the application and distributing the computation and the
operating system driving the hardware of the compute nodes.
Since we want our performance instrumentation to be compatible
with all kinds of middleware packages and since we want to be
as little intrusive as possible, we build our performance monitor-
ing tool side-by-side to the middleware layers found in most mod-
ern distributed systems. We rely primarily on performance coun-

ters available in the microprocessor(s) and performance informa-
tion available from the kernel of the operating system on the com-
pute nodes.
The principal function of our performance monitoring tool is to
map the detailed performance data available at the compute nodes
into a global performance picture that can easily be related to the
total execution time. The overall structure of the software system
is shown in Figure 1.
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Figure 1: Structure of a typical software system with our per-
formance instrumentation.

The functionality of the performance monitoring tool itself can also
be partitioned into three layers.
Thesystem-specific layermonitors and collects system-specific per-
formance data. System-specific performance data includes infor-
mation on resource usage and bottlenecks gathered over the time-
span of the application-run. In our current prototype we monitor
resources like the local CPUs usage, the memory usage, the lo-
cal disks usage and the local network usage as sampled on each
compute node. The monitoring mechanism is based on a dynamic
sampling of performance counters (e.g. floating point operations,
amount of traffic over the network or to and from the disks) al-
ready provided by most operating systems and microprocessors at
regular intervals chosen by the user. The sampling takes place out-
side the kernel by daemon processes which use some performance
hooks into an extended/proc file system and hardware perfor-
mance counters provided by the microprocessors.
Thedistribution-specific layercollects the performance related data
from several compute nodes and patches it into a single coherent
view of the whole system to be handed over to the application-
specific layer. The application traffic and the monitoring traffic are
separated using different transport protocols over the network of
the cluster of PCs or the desktop grid. Our performance monitor-
ing tool inherits the master-slave setting from its middleware coun-
terpart. The data locally collected by the system-specific layer is
processed in the distribution-specific layer and sent to the moni-
toring master by a message passing mechanism. For performance
reasons the monitoring master is kept on a separate node and col-
lects all information from the other compute nodes. The informa-
tion collected from the master is properly filtered by the slaves and
made ready for processing at the application-specific layer. Our de-
tailed study of the most important implementation issues for main-
taining low monitoring intrusions with the inverted middleware is
described in the next section.
The application-specific layeruses the global performance data
of the entire system for application-level optimization and perfor-
mance predictions. The topmost layer uses an analytical model
of the specific application to map the response variables collected
from the global view of the system into suitable suggestions for per-
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formance tuning, e.g. changes of parameters that are performance
relevant factors of the computation. The analytical model translates
the elementary knowledge about the resource usage monitored at
the system-specific layer and gathered by the distribution-specific
layer into high-level answers on performance questions and bot-
tlenecks suitable for suggesting optimizations to the user. More
specifically the model comprises a set of formulas which allow the
calculation of individual execution time contributions due to a sin-
gle class of resources that is the bottleneck for this part of the appli-
cation. For each application the model has to be adapted, validated
and calibrated.
Most of the work described in this paper addresses the characteris-
tic problems related to the distributed and parallel computation on
clusters of PCs and therefore we tightly focus on the distribution
layer. A detailed description of the whole system including all the
layers is reported in the PhD thesis of the first author [6].

3. MECHANICS OF
PERFORMANCE DATA COLLECTION

Because most high performance applications in our environment
exploit task parallelism in a master-slave computation setting, our
monitoring tool collects the performance data in a similar way by
using the same master-slave setting. To ensure consistency and an
accurate performance picture of the system and to capture the real-
time behavior of the monitored application, some frequent and fast
transmissions of performance data from the monitored slaves of the
distributed system to the monitoring master are required. The sub-
sequent sections present a method of performance data collection
that is scalable and is minimizing monitoring intrusions. Particular
attention is given to timestamping the samples with virtual barriers
and minimizing the adverse effects of the monitoring data traffic
by using UDP/IP communication and lossy communication in the
monitoring layer.

3.1 Ordering the Monitoring Performance
Data with Virtual Global Time

Monitoring tools in distributed systems must be able to patch the
performance data of several nodes together into a consistent perfor-
mance picture using global wall-clock time and a coherent notion
of time across the many nodes of the distributed system. To solve
this problem, a monitoring tool has to introduce some mechanisms
of synchronization for sampling performance data. Mechanisms
based on ordered events such as barrier messages for synchroniz-
ing the computation and the communication do always change the
run-time behavior of the monitored application and introduce ad-
ditional idle times changing the scheduling and execution of the
processes.
To cope with the problem of maintaining a global notion of time
while simultaneously reducing scheduling and execution intrusions,
we propose to include a sophisticated notion of global clock based
on accurately synchronized cycle counters in the microprocessors.
We avoid unnecessary synchronization messages (introduced by
mechanisms based on ordered events) through a precise synchro-
nization at the start of the monitoring session. As the execution pro-
ceeds for a longer time interval we are relaxing the synchronization
to a looser synchronization model as in [12]. The necessary syn-
chronization for the timestamps of samples in our monitoring tools
are given by looking at the highly accurate cycle counters in the
CPUs of each participating node. Because of the UDP/IP protocol,
the packets from the monitored slaves to the monitoring master are
not guaranteed to arrive in the same order as they are sent - they

are reordered based on their timestamps. Moreover, due to an un-
reliable transport we can no longer assume that that every packet
is actually received at the master. Instead of enlisting TCP/IP we
introduce timestamps and sequence numbers to account for what
is received in an dedicated packet acknowledgment protocol. This
gives us the option to drop samples in situations of heavy network-
ing load. The cycle counter values together with the sequence num-
ber are assembled into a timestamp in all performance packets con-
taining the sample information of a performance counter that is sent
to the monitoring master.
Such timestamps act as virtual barriers for the monitoring master
which is able to rebuild a global picture of the events of resource us-
age that occurred on the slaves using its own counters and the pro-
filing information of the master. These timestamps of the packets
received ensure a sufficiently accurate notion of global time similar
to the work described in [13].

3.2 Reconstructing the Global Performance
Count from Messages

Most of the monitoring overhead on the slaves is spent in the non-
operational phase managed by timing routines. Most performance
data is only available in the kernel, but most of the performance
monitoring logic is kept external to the kernel and the data is ob-
tained from the kernel through/proc file mechanismin LINUX.
The standard information available in the/proc file is augmented
by additional performance counts to report the total number of
blocks and the number of bytes exchanged from and to the local
disks and the number of messages and bytes sent to or received
from the network interface. As part of the development a kernel
library has been implemented to permit a simple but efficient way
to access the Performance Monitoring Counters (PMC) in the dif-
ferent Intel Pentium and Dec/Compaq/HP Alpha processors used
in our projects [14]. The library offers a uniform interface under
LINUX and Windows NT and supports the monitoring of symmet-
ric multiprocessing (SMP) machines collaborating with the sched-
uler to account for used resources correctly. It works with the
LINUX 2.2.x and 2.4.x kernels and has been validated against other
performance monitoring mechanisms [15, 14].
The granularity of the sampling determines the size of the regular
intervals by which the information about the local nodes is col-
lected. Each sample comprises static performance data, like the
node identifier and the clock rate of the CPU, and dynamic perfor-
mance data. Among the dynamic performance data, our tool is able
to monitor: (1) the CPU behavior in terms of total floating point
operations and number of instructions computed, (2) the memory
availability in terms of total, used and free memory on the node,
(3) the disk performance in terms of number of read and write ac-
cesses as well as sequential and non sequential accesses, and (4) the
amount of traffic transferred over the network interconnect in terms
of amount total bytes received and sent as well as the total number
of packets received and sent. The user sets up both the sample rate
and the kind of performance counters when starting the monitoring.
This process takes place by sending a start command to a controller
daemon which runs on the same node of the monitoring master and
lets the user to control the monitoring master. The user can also
change the sampling rate at run-time, stop the monitoring of a sin-
gle node or the whole pool of nodes by sending a proper command
to the control daemon. Even when monitoring the whole range of
listed counters, the information of each sample is written into pack-
ets whose size is less than 512 bytes. The total collection time for a
packet is irrelevant: because of the coarse grain sampling, we have
observed that the total execution time of a monitored application
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and the total execution time of the same applications without the
monitoring remains the same.
The monitoring master and its control daemon can either run on
a dedicated node or on the same node on which the application
master runs. In our setup, we leave the application user to decide
where to put the application master and the monitoring master. Our
monitoring master is responsible for putting together the local per-
formance figures into a global view. The performance data that the
monitoring master gets from each monitored slave are ordered sets
of workload samples on the local nodes.
The notion of time that we use, i.e. the timestamps of the cycle
counters, helps the monitoring master to maintain the concept of
order for the samples. The concept of a confidence interval is used
to measure the quality of the transmission. The less packets get
lost, the larger is the number of samples. At the same time, the
larger the number of samples is, the higher the confidence in the
performance rebuilding will be.
We save the performance data collected by the monitoring master in
simple log files/log streams rather than in a database (e.g. MySQL,
Oracle). The efficiency of a file system or a simple socket increases
the scalability of the monitoring tool in the capture phase under real
time constraint at the cost of reduced flexibility and capability in the
postprocessing phase that is not time critical. In [16] we question
the use of databases for the simple storage needs of performance
monitoring tools in and show that the overhead of a DBMS can
significantly affect scalability of the tools, in particular the number
of nodes which can be monitored by the master at the same time.
The log files or log streams are passed to the application-specific
monitoring daemon that reconstructs a global performance picture
at an abstraction level most suitable to the application developer.
Each performance count related to a specific node is marked by the
node identification and the CPU clock time as the information is
picked up on the local node. The amount of data sampled locally
at each node and sent as a performance montioring packet might be
small by itself, but the total amount of information gathered from
all the nodes grows rapidly in a large highly distributed system. At
the same time, previous information can often be summarized for
real-time performance evaluation later. Therefore we replace the
initial postprocessing scripts by a concurrently executing daemon
which processes and filters the performance data on the fly up to
the application layer. In the application layer used for evaluating
OLAP workload, the elaboration processing consists of a simple
daemon which is constantly fed with the log files and simple sums
the performance counters to provide the user with an application
classification based on resource usage.
A more advanced application-specific layer that works side by side
with more sophisticated distributed computing middleware can in-
clude a performance model of the application that does translate the
elementary knowledge about the resource usage into higher level
answers to relevant performance questions or for finding bottle-
necks as starting points for performance optimization or for per-
formance predictions on future systems configuration. A detailed
description on how to take middleware and construct an apropri-
ate performance data processing layer for each middleware layer in
complex software system is reported in [6].

3.3 Example: Monitoring Communication Ac-
tivity in OLAP

Most parallel and distributed computations have execution times
that are much larger than lower bound given by the most critical
resource (e.g. CPU cycles or bytes read from a disk). They also
introduce additional intrinsic bottlenecks due to the process of par-

allelization or distribution of the work among multiple proecessors.
An adequate performance monitoring tool must therefore be able to
capture and evaluate a time dependent picture of resource usage and
identify points in time when a particular resource is overused.

The critical machine resources in our simple example of a TPC-D
query executed on a distributed database management system are
the CPUs, the disks and the communication between the multiple
worker nodes and the coordinator node of the distributed system.
Figure 2 shows the amount of data communicated across the net-
work over time. Due to the accurate notion of virtual global time
(synchronized clock counters) we can identify two phases of the
parallel computation. In the first phase (i.e. the first 200 seconds)
there is no visible load on the communcation system. A a closer
look the corresponding charts for CMU or disk usage usage would
indicate the proper peak resource usage for the first phase. The
communication load suddenly starts during the second phase of the
computation. We can also see from the data rates that all the nodes
communicate to the coordinator node simulaneously and that the
total load on the coordinator is additive. The communication per-
formance of the coordinator limits scalability. A closer look reveals
some software inefficiencies in the communication protocols. In
theory the bulk of the data should be uni-directional from the work-
ers to the coordinator receiving all data to assemble the result of the
distributed query - in practice a fine granular request/response pro-
tocol causes a large amount of unnecessary acknowledgement traf-
fic slowing down the data transfer. Our performance tools readily
suggest that it might be impossible to increase the communication
system performance by simply adding faster network hardware.

3.4 Dealing with Intrusions due to Monitoring
Traffic

The monitoring of communication performance in a distributed sys-
tem immediately suggests that the performance of the application
observed by monitors should not be affected by the monitoring pro-
cess itself. The distributed systems community has proposed to re-
move monitoring intrusion effects after the run (i.e. a posteriori)
by carefully restoring the original message order in a network and
reenacting the application run. In the reenactment the monitoring
messages are removed. This approach works only for distributed
application with little communication and misses most subtle forms
of congestion in the switches of the network or the adverse effect
due to second order effects like e.g. slow down in the network in-
terfaces due to limited bandwidth of IO busses. Other approaches
attempt to reduce the monitoring intrusions with additional support
in hardware- [7] and in software [8, 9]. The techniques which re-
fer to the software approaches presented in [8, 9] apply some real-
time estimate of the application computation time based on com-
pensation for each intrusion-induced effect. Unfortunately, these
kind of approaches do not properly suit to the monitoring of high
performance distributed computing applications in clusters of com-
modity PCs well. A clean distributed systems approach, proposed
in [10], tries to reduce the monitoring intrusions by re-engineering
the underlying communication system (e.g. instrument the socket
library), to restore the original order of messages and to remove
the service communication entirely from the performance picture
of the monitored application. While this last approach theoretically
valuable, the approach is limited to token-ring systems or fully con-
nected point-to-point networks.
We take a more practical viewpoint and solve the problem of data
collection without re-engineering the transmission protocol of the
application and without going into the complexity of complete re-
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Figure 2: Example of performance data collected by our monitoring infrastructure - the communication activity (number of bytes
communicated per time unit) during the different phases of processing in a TPC-D Query 3 running on a distributed database
management system on a cluster of PCs with a coordinator node (left) and three processor nodes (right).

moval of monitoring intrusions a posteriori. Our approach is prag-
matic and keeps intrusion at a minimum at the risk of a loss of
precision in monitoring information. To keep the monitoring traf-
fic of performance data as low as possible we use UDP/IP rather
than TCP/IP for the performance monitoring traffic. Since UDP/IP
does not attempt any re-transmission of lost messages, very little
additional perturbation on the monitored application is introduced
at the protocol level due to unwanted synchronization related to
acknowledge messages between monitoring master and monitored
slaves. It is assumed that in situation of heavy load due to the ap-
plication (that uses TCP in most of the cases) the UDP traffic is
simply lost and has little impact on the performance. Furthermore
the performance monitors has knowledge about the amount of com-
munication that is going on at a time and does scale back its trans-
missions accordingly. Moreover, because UDP has no constraints
on the send rate of the performance monitoring packets and does
not need to maintain connection states of the monitoring processes,
this results in less overhead supporting a larger amount of moni-
tored nodes than would be possible with TPC/IP [11].

3.5 Rebuilding Missing Performance Samples
using Regression Models

Because our monitoring tool works on samples of performance in-
formation and not on whole populations [5] and these performance
samples are frequently gathered and immediately integrated into a
probabilistic framework provided by the application-specific layer,
the loss of messages becomes a manageable problem for acquiring
accurate performance views of the system.
Based on our experiments, we have observed that on clusters of
PCs, the UDP/IP protocol works quite well and transmission errors
are infrequent. Only when the network is over-utilized due to trans-
mission bursts, some performance monitoring packets may get lost
and need to be interpolated. Since our data is always expressed
in absolute count (i.e. not deltas: samples dependent on previous
data) there is only the possibility of missing occasional data sam-
ples along the time axis and not whole application runs as might
happen when samples have a dependency on previous data. The
missing samples can easily and reliably be reconstructed by inter-
polation. We indeed transmit total performance information rather

than relative performance values into timestamped packets. This al-
low us to identify packets which went lost during the transmission
and in the end allow us to rebuild the the global performance fig-
ure by using interpolations and message adaptive filters for specific
performance counters (e.g. number of floating-point operations,
number of accesses to the disks).

4. EXPERIMENTAL EVALUATION

In an experimental evaluation, we used our performance monitor-
ing tool to analyze, explain and predict the performance of parallel
and distributed applications which use the middleware functional-
ity for the distribution of the computation on clusters of PCs. We
gathered performance information in two different application do-
mains, i.e. distributed molecular dynamics simulations [3, 4] and
distributed OLAP database workloads. For brevity in this paper,
we pick only the database application domain and execute the 17
queries used in the OLAP database benchmark TCP-D. The main
performance problem of this class of OLAP applications on clusters
of PCs becomes evident from the overall speedup picture shown in
Figure 3.
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Figure 3: Scalability for the TPC-D benchmark distributed
across three nodes of a cluster of commodity PCs with TP-Lite.
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The chart shows unstable and unpredictable performance and speed-
up numbers across the different queries of the benchmark work-
load. For our tests, we consider the distributed TPC-D benchmark
on one, three and six PCs. The applications ran on a variety of
different clusters of PCs within the CoPs cluster test-bed at ETH
Zurich. The figure indicates some speed-up problems with as little
as three nodes for some queries, while some queries get nearly op-
timal speed-up of almost three, others are undergoing a slow-down
(i.e Query 2, Query 9 and Query 10) and some of them (i.e. Query 5
and Query 7) do not even complete in a reasonable time due to some
inefficiency in parallel processing (or inefficiency in the software
that is managing the parallelization). A complete empirical study
of resource usage and scalability for all the 17 TPC-D queries, run-
ning with a distributed database system on clusters of PCs is pub-
lished in [6, 2]. For the particular experiment with our performance
monitor we execute Query 3 on a distributed database system built
entirely from commodity hardware and software, involving a stan-
dard PC cluster running Linux and Oracle and PL/SQL at each
node [17]. The distribution of the query is done automatically with
TP-Lite, an experimental middleware tool provided to us by the
database researchers at ETH [18]. Multiple instances of ORACLE
run on several nodes of our 1 GHz cluster of PCs equipped with
high performance SCSI disks and interconnected by Gigabit and
Fast Ethernet interconnections. We can see that Query 3 is fairly
efficient in distributed processing when running on three PCs with
a speed-up2.35 out of3 maximal possible however, it loses ground
on efficiency on six nodes with a speed-up of only3.92 out of 6 -
see Figure 4(left). Most surprisingly this speedups do not change
when a ten times faster Gigabit Ethernet is substituted for Fast Eth-
ernet.
The total size of the tables in the TPC-D database benchmark un-
der investigation in this test is 10GB. Out of eight data tables of the
TPC-D benchmark, we fully replicate the six smaller tables (i.e.
Customer, Nation, Region, Supplier, Part, PartSupp) and we parti-
tion the two larger tables (i.e. Order and LineItem) equally among
the nodes of the cluster. The amount of RAM is kept down to 256
MB to avoid unwanted caching of the two large relations of the
database - in particular when they are partitioned.

Following our simple model of accounting for resource usage dur-
ing the execution, we want to know from our tool how many CPU
cycles are consumed for processing, how many bytes are read from
and write to the disks and how much data is transferred as com-
munication between the nodes. The application-specific layer of
our monitoring tool assigns fractions of the total execution time
to each resource used based on the pieces of performance informa-
tion available from the performance counters of the microprocessor
or the performance variables in the kernel which have previously
been gathered in a global view by the distribution-specific layer
described in the previous section.
Figure 4 (right) shows the total counts of relative resource usage
as the faction of execution time allocated to the specific machine
resources (i.e. CPU, sequential access to the disk, non sequential
access to the disk and network usage) by our monitoring tool at
the end of the query execution. As expected, there is no inter-node
communication in the uniprocessor case (1 node) and the commu-
nication only becomes visible as we distribute the workload to mul-
tiple nodes (3 and 6 nodes) in the PC cluster. The distribution of
the resources without the network is about 30% CPU and 70% disk
and stays constant for larger clusters as well, implying almost lin-
ear scalability for the CPU and disk components. On the contrary
the fraction of time spent in communication increases with larger
machine and explains the lack of scalability.
Looking at just the total amount of data communicated and the
theoretical peak capacity of the network, it came as an additional
surprise that there is no improvement with the addition of Giga-
bit Ethernet which should theoretically be 10 times faster than Fast
Ethernet.
Prompted by the sudden increase in communication time for a larger
number of nodes, we ask our tool about the time variant informa-
tion on communication loads. In addition to the total counts of
resource usage, our performance tool is able to capture time and
location of all resource usage by showing when, where and why
these resources were exactly required. Because of the accurate no-
tion of time introduced in our monitoring tool, we are able to detect
the global time intervals when the various bottlenecks due to peak
usage of the resources take place. We can take this high transient

6



loads into account by assigning additional execution time to the
consumption of the resource responsible for the bottleneck.
For Query 3 the traces in Figure 5 gathered by our tool identify
some burst network traffic and some imbalance between master/slave
roles. There is also some high volume of unexpected service traffic
that causes a high bi-directional volume despite the fact that appli-
cation data is transferred only in one direction (from the nodes to
the coordinator). In more detail, Figure 5 (left) shows the data rate
of the whole communication activity gathered at the distribution-
specific layer by the performance monitoring tool. An inquiry about
the communication volume balance between the nodes indicates
that the coordinator node shows increased activity while it is co-
ordinating the processing of the query with three/six nodes (coor-
dinator/3 and coordinator/6). At the same time the figure shows
on the right low communication activity for the three/six individual
processing nodes (node n/3 and node n/6). But in total the number
of packets send and received are reasonably balanced.
To summarize, the graphs refute our initial suspicion that commu-
nication is highly asymmetrical due to the master/slave algorithm
used in TP-Lite. The parallelizer tool is supposed to processes par-
tial queries on each node and gathers the results in the coordinator
at the end. In reality, the communication traffic is quite symmet-
rical and during the data transfer the coordinator sends almost as
many bytes to request data as the nodes send for their answers.
Furthermore, we observe that the peak communication rates on the
coordinator node is approximately 6.4 MBit/s only, while the net-
work that can sustain one GBit/s (i.e. 160 times more) under good
conditions. The performance monitoring tool correctly points out
some severe efficiency problems in the communication mechanism
of the Oracle DBMS used in this experiment, leading to a commu-
nication limited scalability of Query 3 for no good hardware reason.
Our Gigabit interconnected 1 GHz PC cluster is a fairly balanced
system (by PC Cluster standards) and should therefore be able to
execute such workloads much better than they did in the software
configuration under investigation.
Database experts suggested to us to study the reason for such a sub-
optimal performance by looking at Oracle’s built-in performance
monitoring and tuning tools [19, 20]. Unlike our tool, such mid-
dleware specific hooks for performance analysis work on the basis
of data collection inside the DBMS and not by mapping the micro-
processor’s or operating system’s performance counts back to the
application level. The Oracle built-in performance traces did not
reveal much interesting news to explain the bad communication
performance and they were only helpful to remove one misguided
optimization of the automatic query optimizer. Furthermore the
data from the DBMS performance tool cannot be easily related to
the technical data of the platform, like e.g. the raw read perfor-
mance of the SCSI disks or the raw throughput of communication
links as our monitoring tool does.

5. RELATED WORK

Most of the existing monitoring tools come in the form of tool-kits
or subroutine libraries. The prevalent principle iscode reuse[21]
instead of design reuse. On the other hand, our monitoring tool
has an overall simple systems structure and comprises parts of the
design and code which is reused independently of the application
monitored or performance metrics investigated. It emphasizesde-
sign reuseover code reuse since its customization to a new applica-
tion class or a new platform might well require a little bit of coding
within the tool. e.g. moving to a different CPUs with different
performance counters.
In the context of theperformance analysis of scientific computation

applications, most of the current methods for performance analy-
sis require that the decisions related to instrumentation are taken
at the beginning of a monitoring session and remain fixed during
the execution of the monitored application. Changes of the per-
formance metrics to be monitored requires a re-engineering or at
least a re-linking of the application binary or even a redefinition
and rewriting of the performance monitoring. Our tools allows the
analysis of data during the collection phase and during the execu-
tion of the monitored application. The user can also redefine the
data collected or the interval between two performance samples by
dynamically acting on the parameters or the granularity of the data
collection. Tool-kits like SvPablo [22, 23] capture performance
data on platform architectures using C, Fortran and HPF compilers
to instrument the source code and later visualize performance in-
formation. SvPablo requires the generation of a new version of the
source code containing links to the selected events to be monitored.
Our approach accomplishes the monitoring goals without any intru-
sion into the application code. Paradyn [24] is a quite sophisticated
monitoring tool which requites that performance instrumentation
is inserted into the application program and modified during exe-
cution. The strengths of our approach compared to Paradyn is the
simplicity of the instrumentation and the and the dynamic behav-
ior of the monitoring process. Using tools like VAMPIR [25, 26]
and dyninstAPI [27] programs require re-linking with a specialized
library. For our monitoring tools, no re-linking of the application
is required. Moreover, VAMPIR keeps the performance data lo-
cally in each processor’s memory saving them to disk when the
application is about to finish for post-mortem optimization. On the
contrary, our tools allows a dynamic processing of the information
at runtime: during the application execution the trace data is sent in
small, non-intrusive packets to a monitoring master. The Autopilot
monitoring tool [28] provides a method for modeling and predict-
ing using performance contracts between the application and the
system. Autopilot provides read access to the remote application
hosts via software sensors embedded in the application code and
therefore requires a modification of the code before the applica-
tion is executed. Contrary to the method proposed in [28], we do
not need to insert any embedded components into the code of the
application under investigation before the application is executed.
We also do not specify any a priory expectation of the performance
to be observed. Tools like W3 Search Method [29] try not to em-
brace the fixed approach to data collection present in the tools listed
above. Similar to our monitoring tool, the W3 Search Method is
application and machine independent. In addition, our monitoring
tool is middleware independent.
In the context of theperformance analysis of high performance dis-
tributed database applications, most DBMS packages (e.g. ORA-
CLE [19]) incorporate elaborate instrumentation for performance
monitoring and performance tuning, but such instrumentation nor-
mally works on the basis of data collection within the DBMS and
do not directly relate to the usage of physical resources in dis-
tributed systems as our monitoring tool does.

6. CONCLUSION

Performance analysis in parallel and distributed computing systems
like clusters of commodity PCs remains a highly difficult task,
since we are still lacking simple tools that are capable of provid-
ing the user with performance insight without requiring either a lot
of knowledge about distributed programming or a significant ef-
fort for instrumenting the middleware and application source codes
with additional performance monitoring hooks.
As a conceptual contribution to this area of research, we present a
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Figure 5: Communication activity during the the processing of Query 3 for three/six nodes on the coordinator node (left) and on each
of the three/six processor nodes (right).

novel, general structure of a simple, but efficient performance mon-
itoring tool for parallel and distributed applications. Our monitor-
ing tool is built on one simple functionality and is therefore easy
to understand. Unlike many sophisticated performance tools, our
monitoring tool does not require re-engineering of the application
nor the middleware but - instead - maps the performance counters
of the microprocessors and performance variable available at the
operating system level backwards to some high level representa-
tion that is more suitable for the proper analysis by the application
writer. The underlying performance model is based on the simple
concept of decomposing the total execution time of a distributed
application into partial execution times that are broken down ac-
cording to a vector of resource usage.
As an implementation contribution, we identify and solve several
interesting implementation issues related to the collection of per-
formance data on a Clusters of PCs and show how a performance
monitoring tool can efficiently deal with all incurring problems.
First, we show how our tool is able to capture inefficient execu-
tion due to resource bottlenecks with a low monitoring intrusion
just by looking at the traces of resource usage all over the entire
system in a fairly loose notion of time. We use timestamps along
with all counter samples to correlate and assemble the performance
data into a global performance log at the performance monitoring
master. Sampling all performance monitoring information at a high
rate is limited by the adverse effects of monitoring intrusion. Ad-
ditional network traffic generated by the data collection must be
bounded and kept at a minimum. We solve this problem by relying

on a loosely collection scheme, that allows for dropping samples
at in some time steps of intense communication in the application.
Since any additional flow control of the monitoring traffic can ad-
versely affect a running behavior of the distributed application, we
use unacknowledged UDP/IP transfers instead of reliable TCP/IP
for monitoring - at the risk of loosing samples. To cope with the
possible loss of performance data, our tool rebuilds missing per-
formance samples using regression models and maintains accurate
total counts for all resource usage.
As an experimental contribution, we demonstrate the utility and the
correct mode of operation of our performance monitoring tool for
Query 3 - one of the least scalable and most interesting queries
among the 17 queries in the TCP-D benchmark. The execution of
the benchmark is distributed over three or six nodes of a cluster
of commodity PCs and two different networking infrastructures are
studied. Our performance monitoring tool can easily identify that
Query 3 is a representative of a set ofnetwork-limitedqueries. This
analysis is obtained without requiring re-engineering of or exces-
sive intrusion into either the DBMS or the algorithm for distribu-
tion. The successful use of our tool with a SQL query distribution
middleware and some replicated ORACLE DBMSes at each node
shows that a performance monitor can be built and used even in the
presence of middleware as a black-box that can neither be recom-
piled nor instrumented in another way.
Due to its simple mode of operation and its accurate notion of time,
our tool further identified and explained the extremely bad com-
munication efficiency due burstyness of the communication activity
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and the inefficient protocols used by the Oracle DBMS for commu-
nication within a cluster. The highly similar runs with and without
Gigabit interconnect hardware clearly point to software inefficiency
behind limited scalability of Query 3 and demonstrate that a better
communication system in the PC cluster would not have helped.
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